Deficiency of actin depolymerizing factors ADF/Cfl1 in microglia decreases motility and impairs memory

Published in: bioRxiv, 2025
Type: Pre-Print

Citation

Sophie Crux, Marie Denise Roggan, Stefanie Poll, Felix C. Nebeling, Juliane Schiweck, Manuel Mittag, Fabrizio Musacchio, Julia Steffen, Katharina M. Wolff, Andrea Baral, Walter Witke, Christine Gurniak, Frank Bradke, Martin Fuhrmann, "Deficiency of actin depolymerizing factors ADF/Cfl1 in microglia decreases motility and impairs memory" (2025). bioRxiv, bioRxiv 2024.09.27.615114 https://doi.org/10.1101/2024.09.27.615114

Abstract

Microglia are highly motile cells that play a crucial role in the central nervous system in health and disease. Here we show that actin depolymerizing factors ADF and Cofilin1 (Cfl1) are key factors of microglia integrity and function. We found a profound morphological phenotype in absence of ADF and Cfl1 in microglia. In vivo two-photon imaging of microglia with ADF/Cfl1-KO revealed reduced microglial fine processes motility and impaired microglia migration towards a laser-induced lesion. We found increased accumulation of stabilized F-actin and altered microtubule dynamics in ADF/Cfl1-KO microglia, indicating that ADF/Cfl1 are necessary for microglial cytoskeleton dynamics. Interestingly, microglial ADF/Cfl1-deficiency decreased learning and memory, suggesting that impaired microglial cytoskeleton dynamics affect neuronal functions relevant for cognition. Our results reveal a fundamental role of ADF/Cfl1 in microglia function and underscore the importance of these innate immune cells for higher cognitive functions.

comments